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We present a study of a series of eigenstates occurring in the wedge billiard 
which may be quantized about tori by semiclassical adiabatic quantization, even 
though the underlying classical system exhibits hard chaos and strictly possesses 
no tori. We also show that adiabatic eigenstates should be common in many 
chaotic systems, especially among the lower eigenstates, and present a heuristic 
argument as to why this should be so. 
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1. I N T R O D U C T I O N  

In this paper we examine the relationship between a classical system show- 
ing hard chaos and its quantum counterpart via adiabatic semiclassical 
quantization, ~ also known as Born-Oppenheimer quantization/2~ Semi- 
classical methods are useful because it is in the semiclassical regime where 
we may attempt to apply our classical intuition to the often nonintuitive 
results of quantum mechanics; we can try to 'make sense' of the quantum 
results. We use classical adiabatic methods ~s~ coupled with the uncertainty 
principle to understand a certain class of eigenstates, which we call 
adiabatic eige!lstates, seen in the quantum analog of a classical system 
showing hard chaos. 

The surprising fact is that the quantum system behaves as though it 
'sees' an integrable classical system for these eigenstates and quantizes 
eigenstates around nonexistent classical tori. The quantum eigenfunctions 
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are 'scarred' by classical structures which, strictly speaking, only exist for 
finite time scales. 

We believe that such adiabatic eigenstates are ubiquitous in many 
systems showing hard chaos. The hyperbola billiard t31 with its adiabatic 
horn eigenstates ~ and the stadium billiard 14~ with its whispering gallery 
adiabatic eigenstates ~2~ are just two examples of such adiabatic eigenstates 
occurring in billiard systems. They also occur in smooth potentials which 
show chaos, such as the quartic oscillator tS~ and nonhydrogenic atoms in 
magnetic fieldsJ 6) The fraction of eigenstates which are adiabatic eigen- 
states relative to the total number of eigenstates is significant, especially for 
the low-lying levels which are often the basis of numerical and experimental 
investigations. Given the ubiquity of these adiabatic eigenstates and their 
significant numbers, it is essential to have a clear, intuitive understanding 
of them if we are to understand the correspondence between classical and 
quantal chaos. 

The plan of this paper is as follows. In Section 2 we briefly review the 
relevant ideas of classical and quantal adiabatic theory. We introduce the 
wedge billiard and apply the ideas of adiabatic quantization to the wedge 
billiard and obtain the semiclassical eigenvalues of the adiabatic 
eigenstates. We show that the number of such adiabatic eigenstates, as a 
fraction of the total number of eigenstates, is quite significant. The 
adiabatic eigenstates typically constitute about 10% of the first 100 
eigenstates. Furthermore, this fraction only decreases slowly with energy. 
In Section 3 we introduce the notion of quantum and classical Wigner 
functions for the wedge billiard. In Section 4 we present the results of 
numerical calculations of the eigenvalues and eigenfunctions of the wedge 
billiard and show a series of scarred adiabatic eigenstates. We compare the 
adiabatic predictions with the numerical results and find excellent agree- 
ment. In Section 5 we discuss the results and propose further avenues for 
exploration and research. 

2. CLASSICAL AND Q U A N T A L  A D I A B A T I C  THEORY: 
THE WEDGE BILLIARD 

We briefly review the classical theory of adiabatic invariance/81 
Consider the one-dimensional Hamiltonian 

H=H(q,p, 2) (1) 

Here we consider 2 a parameter. We assume that, for 2 constant, there exist 
action-angle variables for the system for some range of parameter values 
21 ~<2~<22 . 
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The action, which is defined by 

J=l  ~ p(q,H,,,l)dq (2) 

is then also a constant of the motion. 
The classical theory of adiabatic invariance states that if we now allow 

2 to vary slowly with time, then J as defined in Eq.(2) is still an 
approximate constant of the motion. 

The connection with quantum mechanics is made by the usual EBK 
semiclassical quantization rule, (9~ which states that the classical action must 
be quantized according to 

J=(n+u/4)h, n = 0 ,  1, 2,... (3) 

where u is a positive integer, called the Maslov index, which characterizes 
the number of times the semiclassical approximation breaks down along 
the traversal of a cycle in evaluating the integral in Eq. (2). 

We now proceed to apply these ideas to the specific system we are 
studying. The classical system is known as the wedge billiard, and has been 
the subject of previous classical I~~ and quantal ( ~  investigations. The 
wedge billiard consists of a particle of mass m confined to the region 
between the Y axis and the line Y= X cot ~, ~b being the wedge angle. We 

X 

Y \ 

x 
Fig. 1. The geometry of the wedge billiard. The relationship between the two sets of coor- 
dinates [the usual (X, Y) coordinates, and the (x, y) coordinates which point along the tilted 
wall and perpendicular to the tilted wall, respectively] is shown. Also shown is part of a typi- 
cal glancing trajectory where the particle makes several shallow bounces along the tilted wall. 

822/83/1-2-18 
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assume the particle makes elastic collisions with the wedge boundaries and 
is acted upon by a constant force F in the negative Y direction as in Fig. 1. 
The Hamiltonian is 

H I  ? ,) 

2m (PTv+ P-r) + FY, X~>O, Y>~Xcot r (4) 

where Px and p r are the momenta in the X and Y directions, respectively. 
For  wedge angles less than 45 ~ the system exhibits soft chaos; the 

phase space consists of regions of chaos interspersed with invariant tori. 
For  r = 45 ~ the system is integrable; the phase space is entirely filled with 
invariant tori. For  wedge angles between 45 ~ and 90 ~ the system exhibits 
hard chaos; tl~ there are no invariant tori in the phase space and all 
periodic orbits are unstable. 

We change coordinates to those coordinates, (x, y), which run parallel 
(x), and perpendicular (y) to the tilted wall of the wedge, as in Fig. 1. In 
this way we isolate the 'fast' from the 'slow' motion: 

x = X sin r + Y cos r y = - X cos r + Y sin r (5) 

Then, in the new variables the Hamiltonian is 

2 2 

H = ~ + F x c o s r 1 6 2  0 ~<y ~<x tan r  (6) 

Consider the motion of the particle on those classical trajectories 
where the particle glances at a very shallow angle along the tilted wall. This 
is a very special subset of all possible motions in phase space. However, it 
turns out to have profound consequences on the quantum system. During 
this motion the frequency of the motion in the y direction is much greater 
than that in the x direction. This means that during one bounce in the y 
direction x may be treated as approximately constant. We write Eq. (6) as 

H =  ~ + H,,(x) (7) 

where 

Hy(x) = + Fx cos r + Fy sin (8) 

In the Hamiltonian H,.(x), x may be regarded as a slowly varying 
parameter; the principle of adiabatic invariance may be used. The action in 
the y variable, J.,,, is an approximate constant of the motion, 
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1 t" X, 
Z,,= E,.) 4' 

l t-E.~./(Fsin~b)- x/rand> 
{2m[(E,,-Fx cos q$) -Fy sin ~b]} 1/2 dy 

2(2m) I/2 
- 3nF sin c b (E , . -  Fx cos  ~b) 3/2 

or solving for E.,. we get 

(3nFsin ~ "~- 
E,. = \ 2(2m ),/2 j , . ) ' / ,  

(9) 

+ F x c o s  ~ (10) 

Since J,. is approximately constant during the x motion up and down 
the tilted wall, we may use Eq.(10) in Eq.(7) to get our adiabatic 
Hamiltonian in x as 

H,d(x) = p-',. f3nFs in  ~b \2/3 
+ +t ) (11) 

The action variable for the x motion is found in an exactly analogous 
manner, giving 

2(2m) '/2 [ (3rtFsi_n_ek j "~-'/31 3/2 
J" 3rcFcos ~b [ E -  (12) �9 \2 (2m)  '/2 YJ J 

Equation (12) can be solved for E to give 

E = (3nF  cos__~ J )2/3 /3rcF sin ~b \2/3 
t, 2(2m)1/2 -"J + t  2~77) i/T J:') (13) 

Since J.,. and J,, are separately conserved during the glancing clasical 
motion and since the Hamiltonian is an additive function of x and y 
separately, it is now tempting to set equal the corresponding pieces in 
Eqs. (6) and (13) to get 

" (3nFcos  ~b j "~2/3 
2m p~ + r x  cos q5 ~ \ ~ .,.j (14) 

p~ (3rcF sin ~ )2/3 
2n~ + Fy sin ~b ~ k, 2 (2m)  '/2 J,, ( 15 ) 

This classical adiabatic theory remains valid for the glancing motion 
up and down the tilted wall as long as the frequency of motion in the y 
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direction, COy, is much greater than that in the x direction, co.,.. The classical 
frequencies are defined by 

OE(Jx, J,,) ~E(J,., Jr) 
~  - OJ. , .  " ' c o y  - O J y  " ( 1 6 )  

Upon using Eq. (13) in Eq. (16) and the validity criterion of the adiabatic 
theory, %, >> co.,., we arrive at 

Jx tan2 ~b >> Jy (17) 

Semiclassically we have the EBK quantization rulC 9) 

Js=h(nk+uk/4), k=x ,y  (18) 

For billiards the Maslov index us must be incremented by two at each 
hard-wall collision. For both the x and y motions we have one semiclassi- 
cal breakdown at the upper turning point and one hard-wall collision per 
cycle, which gives us = 3. 

Using the semiclassical quantization rule (18) in Eq. (13) gives us our 
semiclassical adiabatic eigenvalues 

E = f  3nhF X2/3 2/3 
n,.,n). \2(2m)l/2j {[ (n_,.+~)cos~b] + [  (ny+~)s in~bl  2/3} (19) 

The condition for the validity of the adiabatic approximation, Eq. (17), 
may be cast in a quantum form using Eq. (18) to give us the result that in 
the quantum system we must have 

n,. tan 2 ~b >>ny (20) 

for the quantum adiabatic approximation to be valid. 
How many states, as a fraction of the total number of states at some 

energy, can we expect to be quantized in such an adiabatic fashion? 
Because of the restriction from Eq. (20) that n,. > n~. we essentially have a 
one-dimensional problem where ny remains small and constant, and n,. 
varies. Then, differentiating Eq. (19) with respect to n,., we have that 

OE 2 (3~zhFcos (b'~ z/3 1 
On,.=~-\ 2(2m),/2 j (n.,.+3/4),/3 (21) 

and using the fact that, for large n,. (and hence large E), we have from 
Eq. (19) 

( ~)"~(2{2m)l/2"~'/2E3/2 (22) 
n,~ + ~ \ 3nhF J 
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we find 
(2m) 1/2 E 1/2 dE 

dnx~ (23) 
nhF cos ~b 

For the full two-dimensional problem ~111 the density of states for the wedge 
billiard is 

dN mE 2 
(24) 

~" 4nh2F 2 cot 

where N is the total number of states below energy E. Upon using Eqs. (23) 
and (24) we find that 

dn,.~ ( 2 ~  '/2 Fh 1 1 
dN ~ 4 \ m /  sin ~b E 3/2 m4[tr sin(2~b)] 7/2 N I/2 (25) 

One sees that although limN_~ oo dnx/dN= O, the approach to this limit is 
quite slow. In particular, for the lower eigenstates, where, say, N~< 100, we 
find that a substantial fraction of them (of order 10% or more) are 
adiabatic eigenstates. 

Do adiabatic states make up a significant fraction of states in other 
systems as well? Consider a finite-area, free-particle, concave billiard, such 
as the integrable circle billiard (]*) or the chaotic stadium billiard. (41 For 
such billiards 1121 

m A E  
N -  2nh2 (26) 

where A is the area of the billiard. Supposing that the classical particle 
exhibits adiabatic motion around the boundary, such as the whispering 
gallery eigenstates in the stadium, this motion may be adiabatically quan- 
tized to give (21 

h2~ 2 
E ' ~ n  2 (27) 

where L is th~ perimeter of the billiard and n is a quantum number for 
motion along the boundary and we assume that the adiabatic quantum 
number for motion perpendicular to the boundary is much smaller than n. 
Then the fraction of eigenstates which are adiabatic is given by 

dn L 1 
dN nA1/2 NI/2 (28) 
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In general, for leading-order behavior of N(E) and n(E) given by 

N(E) oc E ~', n(E) oc E/I (29) 

where fl ~ y, then 

dn 
- -  oc N r (30) 
dN 

Thus, even in the scenario of y --. oo, the fraction of eigenstates which are 
adiabatic should fall off as I/N, which is not a very small number. 

For the hyperbola billiard 13"1~ N ~ E l n E / 2 r r  and E ~ r ( n . , . + l )  
(n,. + 1 )/2. Again keeping ny constant, we get 

dN ny+ 1 /Trn~\ ~ In ~ , ~ )  dn,. (31) 

Indeed, in this system the adiabatic eigenstates constitute an almost con- 
stant fraction of eigenstates in the large-N limit. 

These theoretical calculations are borne out by numerical studies of 
chaotic quantum systems ~l'~vl which confirm that adiabatic eigenstates are 
common in chaotic systems, especially among the lower eigenstates. 

There is a somewhat heuristic, but nonetheless appealing argument as 
to why adiabatic eigenstates are common among the lower eigenstates. If 
one considers the simple semiclassical quantization criterion A E A T ~ h ,  
then as long as the spacing between eigenvalues AE is large, classical 
motions with relatively short periods (small AT) have a chance at quantiz- 
ing the motion. The fact that the classical motion over long time scales is 
chaotic is not important for the low-lying eigenstates (with large AE); all 
that matters is motion on 'short' time scales. Hence the fact that the par- 
ticle eventually completes its glancing motion up and down the tilted wall 
of the wedge billiard does not matter. What matters is that for a short time 
the particle behaves as if it was on a torus of an integrable system and this 
is what the quantum mechanics 'sees.' As one goes higher in the eigen- 
spectrum the density of states increases and hence AE decreases. Thus, the 
classical particle must stay on a classical structure for longer and longer 
times for the quantum mechanics to 'see' the classical structure. Corre- 
spondingly less of the classical phase space contains such approximately 
conserved structures 1~31 and so the fraction of adiabatic states diminishes, 
and since the classical system is actually chaotic and ergodic, goes to zero 
with increasing energy. 
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3. WIGNER FUNCTIONS 

One could also carry through the adiabatic quantization procedure on 
the eigenfunctions and arrive at semiclassical, adiabatic eigenfunctions in 
coordinate space. However, since the spirit of adiabatic quantization lies 
with quantizing structures in phase space, the Wigner function ~14-16~ of an 
eigenstate is a more appropriate object to study. 

The eigenstate Wigner function for an eigenstate of the wedge billiard 
with energy E,, is defined by 

'/t( x, y, p.,., p y; E,,) 

1 d~ l d~ 2 exp 2i 
- (nh)2 . . . . .  - ~  (P.,-~1 + P),~z) 

x ~ , * ( x + ~ l , y + ~ 2 ) q J , , ( x - ~ l , y - ~ , _ )  (32) 

where ~b,,(x, y) is the quantum eigenfunction, which is a solution to the 
eigenvalue equation obtained from substituting operators into Eq. (6), 
namely 

{_,,:(02 02) } 
~---s+~--~ + F ( x c o s d c + y s i n ~ )  O.(x ,y)=E, ,O, , (x ,y)  (33) 

2m u.Y- u y -  

The boundary conditions for Eq. (33) are ~b,,(x, 0 ) = 0  and 
qJ,,(x, x tan ~b) = 0. 

Classical particles are described in quantum mechanics by wave 
packets, which are sums over eigenstates. In phase space, the analog of a 
classical particle with energy near E N is a sum over eigenstate Wigner func- 
tions centered on the classical energy. We define such sums over Wigner 
functions by 

'~P'(x, y, p.,-; E,v) = ~'. a(n) ~g'(x, y, Px; E,,) 
I1 

(34) 

where a(n) is some function strongly peaked about the energy of the 
classical particle, EN. For example, to describe quantum mechanically a 
semiclassical" microcanonical ensemble centered around E~ one could 
choose a(n) = 1/(Nmax - -Nmin)  if Nmi n < n < N . . . .  N = (Nma x - -Nmi  n)/2, N >> 
Nma x - -Nmi  n >~ l ,  and a(n)= 0 otherwise. The condition N,> 1 ensures that 
the system is semiclassical; the combined condition N>>Nm,.,,-Nmin ~ 1 
ensures that the members of the ensemble have approximately the same 
energy and that the slab in energy space is classically 'thin' yet quantum 
mechanically 'thick.' Hence the quantum ensemble mimics a classical 
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microcanonical ensemble. On the other hand, the eigenstate Wigner func- 
tion for an eigenstate labeled by N is given by setting a(n)=JN,,, in 
Eq. (34). 

The beauty of the Wigner function (34) is that in the classical limit of 
h ~ 0 (which in this case is given by N>> 1 ) different behaviors are expected 
for ergodic and integrable systemsJ 's'161 For an ergodic, classically chaotic 
system the limiting form of its Wigner function, which we will call the 
classical Wigner function, is 

5[E N-  n(q, p)] 
lim ~P(q, p; EN) ~ (35) 
,,-0 I I aq ap U(q, p)] 

whereas for an integrable classical system 

l 
lim ~T(q, p; EN) ~ ( ~ ) o  J[J(q, P) --JN] (36) 
h ~ O  

where H(q, p) is the classical Hamiltonian of the D-dimensional system and 
J(q, p) is the classical action [a constant of the motion, as in Eqs. (14), 
(15)] and JN is the quantized value of this action corresponding to the 
quantum number N [as in Eq. (18)]. These classical limits of the Wigner 
functions are none other than the classical phase space densities. In 
Eq. (35) the classical phase space density is for a classical microcanonical 
ensemble with energy EN. In Eq. (36) the classical phase space density is 
for a microcanonical ensemble with energy EN and which is further con- 
strained to lie on tori. 

In the classical limit, we expect the Wigner function to be one of two 
types~lS'16): either spread out uniformly over the energy shell [Eq. (35)] if 
there are no constants of the motion besides the energy, or concentrated on 
classical tori I-Eq. (36)] if there are constants of the motion besides the 
energy. Since the adiabatic eigenstates have two approximate constants of 
the motion (the actions in the x and y directions are separately conserved), 
we expect the Wigner functions constructed from the adiabatic eigenstates 
to be concentrated on classical tori. In contrast, the Wigner functions con- 
structed from the 'ergodic' quantum eigenstates should be spread out 
across the energy shell. 

In the semiclassical regime the eigenstate Wigner function (32) has a 
rich structure, t~6J with maxima located on the conserved classical quan- 
tities, characteristic oscillations as one moves away from the maxima 
toward the classically accessible region, and an exponential decay as one 
moves from the maxima toward the classically inaccessible region. 

Since the wedge billiard has two spatial dimensions, the Wigner func- 
tion is four-dimensional. Such four-dimensional objects are difficult to 
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visualize, so we will project out the y component of the Wigner function to 
leave us with a function of x and Px as follows; define 

L W(x, px;EN)=fo dy dpy'~(x,y, px, py;E,v) (37) 

Wigner functions such as Eq. (37) will be the main objects of our study of 
the adiabatic eigenstates of the wedge billiard. 

For the wedge billiard the classical Wigner functions, Eqs. (35) and 
(36), may be analytically evaluated. We omit the details and here we quote 
the results. For ergodic behavior we have from Eqs. (35) and (37) 

{I )]: (2m) 1/'- cos r EN -- + Fx cos r 
W(x,p.,.;EN)- E~ sin2 r 

(38) 

for p]./(2m) + Fx/cos r ~< EN and 

E~r sin-" r \2m + Fx cos r (39) 

for p~./(2m) + Fx cos r ~< EN < p~./(2m) + Fx/cos r and W(x, Px; EN) = 0 
otherwise. 

For adiabatic behavior we have from Eqs. (36) and (37) that 

1 
W(x, p.,.; EN) = ~ 6[Jx(x, Px) -- J,v,.] (40) 

where J,.(x,p.,.) is defined by Eq. (14) and JN,. is defined by Eq. (18). 

4. R E S U L T S  

The exact eigenvalues and eigenfunctions for the wedge billiard have 
previously been calculated by a large matrix diagonalization. ~l~) For the 
matrix diagor~alization and the figures shown in this paper scaled units ~l~) 
have been used; this is equivalent to setting h = m = F =  1. Figure 2a shows 
a plot of a 'regular' eigenfunction, labeled by N =  57, which is localized 
along the tilted wall of the wedge, highly suggestive that this is an adiabatic 
eigenstate. Figure 2b shows a typical 'irregular' eigenfunction, N =  56. By 
scanning plots of the eigenstates we can pick out a series of localized 
adiabatic eigenstates, each member having zero nodes in the y direction 
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Fig. 2. Shaded contour plots of ~(X, Y) for (a) an adiabatic eigenstate (labeled by quantum 
number N= 57) and (b) a typical "chaotic' eigenstate (labeled by quantum number N= 56). 

(n;. = 0), and each successive member  in the series having another node in 
the .x" direction (17.,. = 1, 2, 3,...). These adiabatic eigenstates should be con- 
centrated on the classical tori given by Eq. (40). 

Figures 3a and 3b show plots of the corresponding eigenstate Wigner 
functions, Eq. (37) with a(n)=6,v.,,, for eigenstates N = 5 7  and N = 5 6 ,  
respectively. These should be compared with Figs. 4a and 4b, which show 
the classical Wigner functions, Eq. (40) and Eqs. (38) and (39), respec- 
tively, evaluated at the energy of eigenstates N =  57, 56. It is clear that the 
adiabatic eigenstate in Fig. 3a is strongly localized near the classical torus 
shown in Fig. 4a, with characteristic oscillations as one moves into the 
classically accessible region. The irregular eigenstate in Fig. 3b has much 

Fig. 3. Shaded plots of the eigenstate Wigner functions (37), with a(n)=,~^,,,. The plots 
correspond to (a) an adiabatic eigenstate (labeled by quantum number N=57) and (b) a 
typical 'chaotic' eigenstate (labeled by quantum number N= 56). 
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Fig. 4. Plots of the classical Wigner functions corresponding to (a) an adiabatic state, 
Eq. (40), which is a delta function on the classical torus, and (b) an 'ergodic' state, Eqs. (38) 
and (39), which is a uniform distribution on the energy shell. 

more  in c o m m o n  with Fig. 4b than  Fig. 4a; it is concentra ted  more  toward 
the center of  the classically allowed region and avoids the torus. 

We can get a clearer picture of  the c lass ical -quanta l  cor respondence  
by forming a sum over  adiabat ic  and ergodic eigenstates, respectively, as 
suggested by the classical ensembles implied in Eqs. (35), (36): Summing  
the eigenstate Wigner  functions for adiabat ic  eigenstates N =  51, 57, 63 as 
in Eq. (34), we generate  a q u a n t u m  microcanonical  ensemble which should 
closely mimic Eq. (36). The  results are shown in Fig. 5a. The Wigner  func- 
t ion is s trongly concentra ted  on the classical torus  shown in Fig. 4a and 
most  of  the oscillations in the classically accessible region have been 
averaged away. Summing  the eigenstate Wigner  functions for 10 irregular 
eigenstates N =  52, 53, 54, 55, 56, 58, 59, 60, 61, 62, we generate a quan tum 

Fig. 5. Shaded plots of Wigner functions (37) corresponding to semiclassical microcanonical 
ensembles of(a) adiabatic eigenstates (normalized sum over eigenstates labelled by N = 51, 57, 
63) and (b) 'chaotic' eigenstates (normalized sum over 10 eigenstates labeled by N= 52, 53, 
54, 55, 56, 58, 59, 60, 61, 62). 
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microcanonical ensemble which should closely mimic Eq. (35) correspond- 
ing to an ergodic classical situation. The results are shown in Fig. 5b, and 
are seen to have a close correspondence with Fig. 4b. The ensemble 
constructed from regular eigenstates is a good example of caustic-type 
behavior in the semiclassical limit; the irregular eigenstate ensemble is a 
good example of anticaustic-type behavior. (j5"~6) 

Using plots of the eigenstates and Wigner functions such as Figs. 2 
and 3, we are able unambiguously to pick out and label, by a pair of 
integers (nx, ny), the adiabatic eigenstates of the wedge billiard. Using these 
integers in the adiabatic quantization condition, we obtain from Eq. (19) 
the adiabatic eigenvalues shown in the second column of Table I. The exact 
eigenvalues (labeled by N) are shown in column 4, and column 5 shows the 
difference between the exact eigenvalues and the adiabatic eigenvalues. One 
sees that the adiabatic eigenvalues are consistently higher, by an almost 
constant amount, than the exact eigenvalues. This is probably because of 
the failure of the adiabatic quantization properly to account for the bound- 
ary conditions near the wedge vertex. Evidence of this failure can be seen 
in Figs. 3a and 5a); the Wigner functions do not follow the classical torus 

Table I. Comparison Between Adiabatic 
Eigenvalues and Exact Quantum Eigenvalues 
for States Identif ied as nv= 0 Adiabatic States 

for the 49 ~ Wedge 

n,  E,,,.,, N EN E u - E ,  ,, E ,  ,, + c  
�9 r ,  , x .  y 

1 3.973 1 3.816 --0.157 3.861 
2 4.833 2 4.712 --0.121 4.721 
3 5.592 3 5.472 --0.120 5.481 
4 6.286 5 6.171 --0.115 6.175 
5 6.933 7 6.823 --0.109 6.821 
6 7.543 I 0 7.442 -- O. 1 O0 7.431 
7 8.123 12 8.018 --0.105 8.011 
8 8.679 15 8.585 --0.094 8.567 
9 9.214 19 9.137 --0.077 9.102 

10 9.731 23 9.679 --0.052 9.619 
11 10.232 26 10.091 --0.142 10.121 
12 10.719 30 10.586 -0 .133  10.608 
13 11.194 35 11.068 -0 .126  11.082 
14 11.657 40 11.537 --0.121 11.546 
15 12.110 45 11.993 --0.117 11.998 
16 12.554 51 12.441 --0.113 12.442 
17 12.988 57 12.879 --0.109 12.876 
18 13.415 63 13.310 --0.104 13.303 
19 13.834 70 13.727 --0.107 13.722 
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in Fig. 4a right into the vertex at x = 0. Denoting the average of the dif- 
ference between the exact and adiabatic eigenvalues listed in the table by 

c = (EN-- E,,.,. ,,~.) --- -0.112 

we list the modified adiabatic eigenvalues, E,,.,..,,,. + c, in column 6. The 
agreement between the exact eigenvalues and the modified adiabatic eigen- 
values is excellent. 

5. D I S C U S S I O N  

We have shown how adiabatic quantization can provide a qualitative 
and quantitative understanding of a series of adiabatic eigenstates in the 
wedge billiard. By plotting the Wigner functions of these states we can 
clearly see the scarring of the adiabatic eigenstates by the classical tori in 
phase space. The somewhat surprising point is that the classical motion of 
all trajectores (except a set of zero measure) is ergodic and chaotic, and 
hence, strictly speaking, there are no tori in the classical phase space. Only 
when one looks on 'short' time scales (defined by the mean level spacing 
and AE A T ~  h) does the quantum system 'see' a classical torus which can 
be quantized. 

We have also shown that these adiabatic eigenstates can be expected 
in relatively large numbers, especially at low energies, in chaotic systems, 
even those classically showing hard chaos. Hence, they must play an 
important role in calculations and experiments with chaotic systems. 

Several unanswered and partly open questions remain about the role 
of these adiabatic states in quantum chaos. The adiabatic states are 
localized about classical invariant tori and hence are not ergodic. Yet, the 
classical system is ergodic and chaotic; at what stage (in increasing N) can 
one reasonably expect a wave packet to display ergodic behavior? Can 
special wave packets be constructed which will show localization on tori 
even for very large N? Will the memory of the adiabatic states persist up 
to the classical limit? 

The fact that there is a regular component to the spectrum also intro- 
duces the pt)ssibility of deviations from GOE 1~7~ statistics in the level 
spacings. It can be anticipated that there are many approximate adiabatic 
constants in chaotic systems, each one producing a regular spectrum and 
deviations from GOE. How far into the classical limit must one go to see 
these deviations disappear? 

One of the most illuminating and successful approaches to the study 
of quantum chaos in recent years has been the periodic orbit approach, t ~71 
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Some work c~'5~ has been done on the connections between adiabatic quan- 
tization and periodic orbit theory; however, the exact way in which 
periodic orbits contribute to the adiabatic eigenvalues is still far from clear. 
This connection is particularly important because the point at which 
adiabatic quantization appears to work, namely for classical motion almost 
confined to classical tori, is the point at which the periodic orbit theory has 
the most trouble. (1~" ~ 
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